Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Advances in Traditional Medicine ; 23(2):321-345, 2023.
Article in English | EMBASE | ID: covidwho-20236383

ABSTRACT

The current outbreak of COVID-19 is caused by the SARS-CoV-2 virus that has affected > 210 countries. Various steps are taken by different countries to tackle the current war-like health situation. In India, the Ministry of AYUSH released a self-care advisory for immunomodulation measures during the COVID-19 and this review article discusses the detailed scientific rationale associated with this advisory. Authors have spotted and presented in-depth insight of advisory in terms of immunomodulatory, antiviral, antibacterial, co-morbidity associated actions, and their probable mechanism of action. Immunomodulatory actions of advised herbs with no significant adverse drug reaction/toxicity strongly support the extension of advisory for COVID-19 prevention, prophylaxis, mitigations, and rehabilitation capacities. This advisory also emphasized Dhyana (meditation) and Yogasanas as a holistic approach in enhancing immunity, mental health, and quality of life. The present review may open-up new meadows for research and can provide better conceptual leads for future researches in immunomodulation, antiviral-development, psychoneuroimmunology, especially for COVID-19.Copyright © 2021, Institute of Korean Medicine, Kyung Hee University.

2.
Precision Nanomedicine ; 5(3):911-917, 2022.
Article in English | Scopus | ID: covidwho-20234356

ABSTRACT

At the beginning of the first COVID-19 wave, it was believed that the life of the patients who had safely survived pulmonary complications caused by SARS-CoV-2 would soon return to normal. Today, we know that this is not for all patients the case. Unfortunately, for many patients, COVID-19 changed into Long COVID – not a life-threatening condition such as the short period of the infection with the coronavirus but with the potential to considerably reduce the quality of life. Notably, Long COVID manifests itself in major pathological alteration in the brain, besides other organs. It is unclear whether the alterations in the brain are reversible. Alterations include but are not limited to cognitive impairment and substantial reduction of grey matter. These clinical findings represent an urgent challenge for the design of nanomedicines targeting the brain and the mode of their application. The challenge comprises a third aspect, which is of physical nature and is the key to a revolution in nanomedicine: the blood-brain barrier (BBB). Even if a nanomedicine is effective in vitro, it remains therapeutically useless if it cannot cross the BBB, which safeguards that neither pathogens nor nanoparticles enter the best-protected organ in our body. Here, we present a theoretical model and discuss experimental results, which coherently indicate that it is possible to transiently open the BBB by its mechanical excitation and/or via chemical modification induced by music. © 2022, Andover House, Inc.. All rights reserved.

3.
Psychiatrie (CZE) ; 26(2):62-67, 2022.
Article in Czech | EMBASE | ID: covidwho-2273817

ABSTRACT

Nigella sativa is an annual herb of the buttercup family, native to Western Asia and North Africa. Its seeds are used as a spice, especially in india and the Middle east, but also for medicinal purposes. Nigella sativa seeds contain a large number of bioactive substances, which have a number of pharmacological effects. It is a forgotten medicine and has been used in various systems of traditional medicine for thousands of years, but studies of modern medicine in recent years show that its therapeutic use can be much wider. it is likely that it could also find use in the treatment of mental disorders such as anxiety, depression and some neurodegenerative diseases. Its potential use in COVID-19 therapy is not without interest.Copyright © 2022 TIGIS Spol. s.r.o.. All rights reserved.

4.
Coronaviruses ; 2(3):384-402, 2021.
Article in English | EMBASE | ID: covidwho-2266161

ABSTRACT

Purpose: A new human coronavirus (SARS-CoV-2), triggering pneumonia, is termed as Coronavirus Disease-19 (COVID-19). There is an alarming situation now as this new virus is spreading around the world. At present, there are no specific treatments for COVID-19. Nigella sativa is known as Prophetic Medicine as its use has been mentioned in Prophetic Hadith, as a natural remedy for all the diseases except death. Seeds and oils of N. sativa have a long history of folklore usage in various systems of medicine such as Unani and Tibb, Ayurveda and Siddha in the treatment of different diseases and ailments. The aim of this research is to provide a potential inhibitor of SARS-CoV-2 Mpro. Method(s): The Molecular docking tool was used to optimize the binding affinities of chemical constituents of N. sativa with SARS-CoV-2 Mpro. Result(s): Many constituents from N. Sativa have shown better binding affinity than reported drugs with SARS-CoV-2 Mpro i.e., the alpha-hederin, Stigmasterol glucoside, Nigellidine-4-O-sulfite, Nigellidine, Sterol-3-beta-D-glucoside, Dithymoquinone, beta-sitosterol have binding affinities (kcal/mol) of-9,-8.1,-8,-7.7,-7.7,-7.4,-7.4, and-6.9 and number of hydrogen bonds formed are 06, 04, 03, 03, 03, 00, and 01, respectively. Conclusion(s): There is rationale and pre-clinical evidence of the effectiveness of N. Sativa that it may be helpful for the treatment of COVID-19 and can serve as a potential natural candidate. However, more studies should be conducted to collect high-quality data and scientific evidence of N. Sativa to use it against COVID-19 clinically.Copyright © 2021 Bentham Science Publishers.

5.
Coronaviruses ; 2(1):89-105, 2021.
Article in English | EMBASE | ID: covidwho-2283718

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected around 13 million people and has caused more than 5.7 lakh deaths worldwide since December 2019. In the absence of FDA approved drugs for its treatment, only symptomatic management is done. Method(s): We attempted to uncover potential therapeutic targets of spike, helicase, and RNA dependent RNA polymerase (RdRp) proteins of the SARS-CoV-2 employing a computational approach. The PDB structure of spike and RdRp and predicted structure of helicase proteins were docked with 100 approved anti-viral drugs, natural compounds, and some other chemical compounds. Result(s): The anti-SARS ligands EK1 and CID 23631927, and NCGC00029283 are potential entry in-hibitors as they showed affinity with immunogenic Receptor Binding Domain (RBD) of the spike pro-tein. This RBD interacts with Angiotensin Converting Enzyme (ACE2) receptor, facilitating the entry of virion in the host cells. The FDA approved drugs, including Nelfinavir, Saquinavir, Tipranavir, Setrobu-vir, Indinavir, and Atazanavir, showed potential inhibitory activity against targeted domains and thus, may act as entry or replication inhibitor or both. Furthermore, several anti-HCoV natural compounds, including Amentoflavone, Rutin, and Tannin, are also potential entry and replication inhibitors as they showed affinity with RBD, P-loop containing nucleoside triphosphate hydrolase, and the catalytic domain of the respective protein. Dithymoquinone showed significant inhibitory potential against the fusion peptide of S2 domain. Importantly, Tannin, Dithymoquinone, and Rutin can be extracted from Nig-ella sativa seeds and thus, may prove to be one of the most potential anti-SARS-CoV-2 inhibitors. Conclusion(s): Several potential ligands were identified with already known anti-HCoVs activities. Fur-thermore, as this study showed that some of the ligands acted as both entry and replication inhibitors against SARS-CoV-2, it is envisaged that a combination of either inhibitor with a dual mode of action would prove to be a much desired therapeutic option against this viral infection.Copyright © 2021 Bentham Science Publishers.

6.
International Journal of Academic Medicine and Pharmacy ; 3(1):88-91, 2021.
Article in English | EMBASE | ID: covidwho-2279972

ABSTRACT

The COVID-19 infection, which emerged at the beginning of 2019 and spread all over the world, led to the global pandemic. The destructive effects of the pandemic are tried to be stopped all over the world. In this process, scien-tific methods should be applied to combat the pandemic. Personal precautions are personal hygiene, apply social isolation and strengthen the immune system, support a natural, balanced, healthy diet, support nutrition with exercise and have a healthy lifestyle. Strong individual immunity is the main factor in avoiding virus infection or the severity of the infection. Social isolation advice has changed the lifestyle of some individuals and brought with a sedentary lifestyle and an irregular diet. As an expected result of this condition, the immune system has been weakened. Therefore, switching to a natural and balanced diet that will create a strong immune system will protect against the destructive effects of the new type of corona virus pandemic. It is very important to supplement food containing vitamins, minerals, prebiotics and probiotics naturally with adequate water intake. Vitamin C, probiotics, prebiotics, thymoquinone, selenium and zinc supplements will strengthen the immune system, increase body resistance, thereby activating possible protective effects mechanisms for COVID-19 infection.Copyright © 2021 Necati Ozpinar. All rights reserved.

7.
Infect Disord Drug Targets ; 23(4): e230223213955, 2023.
Article in English | MEDLINE | ID: covidwho-2275376

ABSTRACT

BACKGROUND: Some individuals may experience symptoms persisting for many months after the recovery from COVID-19 and patients with Long COVID are managed mainly with symptomatic treatment and supportive care. OBJECTIVE: This review article focuses on the beneficial effects of black seeds (Nigella sativa) in the management of long COVID and persistent COVID symptoms. METHODS: The literature was searched in databases such as LitCOVID, Web of Science, Google Scholar, bioRxiv, medRxiv, Science Direct, EBSCO, Scopus, Embase, and reference lists to identify studies, which evaluated various effects of black seeds (N. sativa) related to signs and symptoms of long COVID. RESULTS: Black seeds (N. sativa) have shown potential anti-COVID, antiviral, anti-inflammatory, antioxidant, immunomodulatory, antihypertensive, anti-obesity, antidiabetic, antihyperlipidemic, and antiasthmatic properties in various clinical, animal, in vitro, in vivo, and in silico studies, which would help the patients recovered from COVID to mitigate Long COVID complications. CONCLUSION: Patients experiencing Long COVID may use black seeds (N. sativa) as adjunctive therapy in combination with symptomatic treatment and supportive care to prevent further deterioration and hospitalization. The safety and efficacy of N. sativa in patients with Long-COVID would further be established by future randomized controlled clinical trials.


Subject(s)
COVID-19 , Nigella sativa , Animals , Humans , Plant Extracts/pharmacology , COVID-19/complications , Post-Acute COVID-19 Syndrome , Seeds
8.
Infect Disord Drug Targets ; 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2251016

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) and patients with COVID-19 may be treated primarily with SARS CoV-2-targeting drugs and the therapeutic agents assisting in the management of COVID-19 complications. This review focuses on the supplements like vitamins, minerals, herbal constituents, and others that help prevent or manage negative outcomes among COVID-19 patients. The literature was searched in databases such as Medline/PubMed Central/PubMed, Google Scholar, Science Direct, EBSCO, Scopus, EMBASE, the Directory of Open Access Journals (DOAJ), and reference lists to identify relevant articles. The vitamins, including vitamin C, and vitamin D, minerals such as zinc, selenium, and copper, herbal constituents like thymoquinone, curcumin, naringenin, quercetin, and glycyrrhizin, and other supplements, including N-acetylcysteine and melatonin. Melatonin have been identified as having the potential to manage patients with COVID-19 along with standard care. Some of the ongoing clinical trials are investigating the effectiveness of different supplements among COVID-19 patients.

9.
Anti-Infective Agents ; 21(1) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2215040

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and patients with COVID-19 are managed mainly using repurposed conventional drugs, which target the viral entry and viral replication of SARS CoV-2 along with standard care and supportive therapy. Objective(s): This review article focuses on the potential benefits of black seeds (Nigella sativa) observed in clinical and in silico molecular docking studies of COVID-19. Method(s): The literature was searched using databases such as LitCOVID, Web of Science, Google Scholar, bioRxiv, medRxiv, Science Direct, EBSCO, Scopus, EMBASE, and reference lists to identify published manuscripts or preprints related to the prevention or treatment of COVID-19 with black seeds (N. sativa) or their phytoconstituents. Result(s): Various clinical studies and in silico molecular docking studies determined that black seeds (N. sativa) and their bioactive phytoconstituents have potential activity against SARS CoV-2 infection. Conclusion(s): Patients with COVID-19 could be managed using black seeds (N. sativa) along with supportive care, which would speed up the recovery and decrease the mortality rate. More randomized controlled clinical trials would further establish the safety and efficacy of N. sativa in COVID-19 patients. Copyright © 2023 Bentham Science Publishers.

10.
Molecules ; 27(24)2022 Dec 19.
Article in English | MEDLINE | ID: covidwho-2163533

ABSTRACT

COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m62A), on cancer cells and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling pathways by network pharmacology. It was found that CD, TQ, and m62A repressed the ADAM17 expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by constructing CD-, TQ-, and m62A-based drug-target COVID-19 networks further indicated that ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism might be relevant to viral infection and transmembrane receptors-mediated signal transduction. These findings imply that ADAM17 is of potentially medical significance for cancer patients infected with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme 2 , ADAM17 Protein
11.
Molecules ; 27(21)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2099666

ABSTRACT

As a cellular protease, transmembrane serine protease 2 (TMPRSS2) plays roles in various physiological and pathological processes, including cancer and viral entry, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we conducted expression, mutation, and prognostic analyses for the TMPRSS2 gene in pan-cancers as well as in COVID-19-infected lung tissues. The results indicate that TMPRSS2 expression was highest in prostate cancer. A high expression of TMPRSS2 was significantly associated with a short overall survival in breast invasive carcinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), while a low expression of TMPRSS2 was significantly associated with a short overall survival in lung adenocarcinoma (LUAD), demonstrating TMPRSS2 roles in cancer patient susceptibility and severity. Additionally, TMPRSS2 expression in COVID-19-infected lung tissues was significantly reduced compared to healthy lung tissues, indicating that a low TMPRSS2 expression may result in COVID-19 severity and death. Importantly, TMPRSS2 mutation frequency was significantly higher in prostate adenocarcinoma (PRAD), and the mutant TMPRSS2 pan-cancer group was significantly associated with long overall, progression-free, disease-specific, and disease-free survival rates compared to the wild-type (WT) TMPRSS2 pan-cancer group, demonstrating loss of functional roles due to mutation. Cancer cell lines were treated with small molecules, including cordycepin (CD), adenosine (AD), thymoquinone (TQ), and TQFL12, to mediate TMPRSS2 expression. Notably, CD, AD, TQ, and TQFL12 inhibited TMPRSS2 expression in cancer cell lines, including the PC3 prostate cancer cell line, implying a therapeutic role for preventing COVID-19 in cancer patients. Together, these findings are the first to demonstrate that small molecules, such as CD, AD, TQ, and TQFL12, inhibit TMPRSS2 expression, providing novel therapeutic strategies for preventing COVID-19 and cancers.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Lung Neoplasms , Prostatic Neoplasms , Male , Humans , SARS-CoV-2 , COVID-19/genetics , Prognosis , Adenosine , Mutation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Serine Endopeptidases/genetics
12.
Tropical Journal of Natural Product Research ; 6(8):1233-1240, 2022.
Article in English | EMBASE | ID: covidwho-2033551

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the recently discovered coronavirus and affects several countries worldwide. Some medications may alleviate or minimize some of the disease symptoms, but no drug have been proven to prevent or cure it. However, this study was aimed at investigating the role of some medicinal plants as potent inhibitors of COVID-19 main protease (MPro). More than 250 plant extracts with antiviral activity were exploited for their potential SARS-CoV2 medication using molecular docking. The conformational stability of the compounds extracted from the plants with MPro interactions was evaluated using molecular dynamics simulations. Then, the plant extracts with the highest binding energies were used for treatments by administering them to 50 COVID-19 patients, while the other 50 cases received only the drug without the plant extracts. The results of the theoretical analysis revealed high binding energies for seven compounds. Alliin stabilized COVID-19’s MPro while retaining critical connections and remained stable throughout the simulations. Marrubin and thymoquinone are also capable of protein stabilization over the simulated time. The test plants were observed to be effective against the virus in the COVID-19 patients, with a disease symptom improvement response rate of 78-86 and 60-72% for the first and second groups, respectively. Also, the percentage of oxygen increased from the second day after taking the extracts. Ground-glass opacity disappeared from the second group that received the plant extracts. The findings of this study suggest that these compounds have a great potential for therapeutic activity if isolated and administered alone.

13.
Mini Rev Med Chem ; 22(14): 1847-1875, 2022.
Article in English | MEDLINE | ID: covidwho-2029879

ABSTRACT

Widely consumed worldwide, Nigella sativa (NS) is a medicinal herb commonly used in various alternative medicine systems, such as Unani and Tibb, Ayurveda, and Siddha. Recommended for regular use in Tibb-e-Nabwi (Prophetic Medicine), NS is considered one of the most notable forms of healing medicine in Islamic literature. Thymoquinone (TQ), the main component of the essential oil of NS, has been reported to have many properties, such as antioxidant, anti-inflammatory, antiviral, and antineoplastic. Its chemical structure indicates antiviral potential against many viruses, including the hepatitis C virus, human immunodeficiency virus, and other coronavirus diseases. Interestingly, molecular docking studies have demonstrated that TQ can potentially inhibit the development of the coronavirus disease 2019 (COVID-19) by binding to the receptor site on the transmembrane serine protease 2 (the activator enzyme that attaches the virus to the cell). In addition, TQ has been shown to be effective against cancer cells due to its inhibitory effect by binding to the different regions of MDM2, according to the proposed molecular docking study. Detailed in this review is the origin of TQ, its significance in alternative medicine, pharmacological value, potential as a cancer antiproliferative agent, use against the coronavirus disease 2019 (COVID-19) and for treatment of other diseases.


Subject(s)
COVID-19 Drug Treatment , Nigella sativa , Antiviral Agents/pharmacology , Benzoquinones , Humans , Molecular Docking Simulation , Nigella sativa/chemistry , Oxidative Stress
14.
Plants (Basel) ; 11(15)2022 Jul 24.
Article in English | MEDLINE | ID: covidwho-1957415

ABSTRACT

Since the emergence of the pandemic of the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of antiviral phytoconstituents from medicinal plants against SARS-CoV-2 has been comprehensively researched. In this study, thirty-three plants belonging to seventeen different families used traditionally in Saudi Arabia were tested in vitro for their ability to inhibit the SARS-CoV-2 main protease (MPRO). Major constituents of the bio-active extracts were isolated and tested for their inhibition potential against this enzyme; in addition, their antiviral activity against the SARS-CoV-2 Egyptian strain was assessed. Further, the thermodynamic stability of the best active compounds was studied through focused comparative insights for the active metabolites regarding ligand-target binding characteristics at the molecular level. Additionally, the obtained computational findings provided useful directions for future drug optimization and development. The results revealed that Psiadia punctulata, Aframomum melegueta, and Nigella sativa extracts showed a high percentage of inhibition of 66.4, 58.7, and 31.5%, against SARS-CoV-2 MPRO, respectively. The major isolated constituents of these plants were identified as gardenins A and B (from P. punctulata), 6-gingerol and 6-paradol (from A. melegueta), and thymoquinone (from N. sativa). These compounds are the first to be tested invitro against SARS-CoV-2 MPRO. Among the isolated compounds, only thymoquinone (THY), gardenin A (GDA), 6-gingerol (GNG), and 6-paradol (PAD) inhibited the SARS-CoV-2 MPRO enzyme with inhibition percentages of 63.21, 73.80, 65.2, and 71.8%, respectively. In vitro assessment of SARS-CoV-2 (hCoV-19/Egypt/NRC-03/2020 (accession number on GSAID: EPI_ISL_430820) revealed a strong-to-low antiviral activity of the isolated compounds. THY showed relatively high cytotoxicity and was anti-SARS-CoV-2, while PAD demonstrated a cytotoxic effect on the tested VERO cells with a selectivity index of CC50/IC50 = 1.33 and CC50/IC50 = 0.6, respectively. Moreover, GNG had moderate activity at non-cytotoxic concentrations in vitro with a selectivity index of CC50/IC50 = 101.3/43.45 = 2.3. Meanwhile, GDA showed weak activity with a selectivity index of CC50/IC50 = 246.5/83.77 = 2.9. The thermodynamic stability of top-active compounds revealed preferential stability and SARS-CoV-2 MPRO binding affinity for PAD through molecular-docking-coupled molecular dynamics simulation. The obtained results suggest the treating potential of these plants and/or their active metabolites for COVID-19. However, further in-vivo and clinical investigations are required to establish the potential preventive and treatment effectiveness of these plants and/or their bio-active compounds in COVID-19.

15.
Chemistry Africa-a Journal of the Tunisian Chemical Society ; : 23, 2022.
Article in English | Web of Science | ID: covidwho-1926127

ABSTRACT

Since time immemorial, natural products have found applications for the treatment of many maladies and ailments. This review attempts to portray the chemistry, bio-medical activities and efficacy in the therapy of COVID-19 of one age-old famous spice cumin and an eminent herb turmeric. Both of them have found significant applications in the disciplines of Ayurveda for their physiological and nutraceutical benefits. It is worth mentioning that the versatility of cumin and turmeric in terms of treating a variety of ailments, as well as their antioxidant properties, has always piqued the curiosity of the scientific community. Even in recent times, both of them are being scrutinised for their response to the global pandemic, COVID-19. Thymoquinone, the most abundant constituent of black cumin has shown immense therapeutic potential. On the other hand, curcumin, an important bio-active component of turmeric owns a wide array of pharmacologic effects. The utilisation of curcumin-derived carbon quantum dots and nanoparticle bound curcumin, on the other hand, is a new field in nanomedicine. Having said all these things, a few challenges have been encountered regarding their uses as drug candidates. Several research papers for the past fifteen years have been consulted using online databases like Google Scholar, Scopus and PubMed to compose this article in the viewpoint of the promises and challenges of the active constituents of cumin and turmeric as potential drug candidates.

16.
Front Pharmacol ; 13: 848676, 2022.
Article in English | MEDLINE | ID: covidwho-1809490

ABSTRACT

The COVID-19 pandemic has impacted every country in the world. With more than 400 million cases and more than 5.5 million deaths. The FDA either approved or authorized the emergency use for three vaccines against COVID-19. The treatment options of COVID-19 are very limited. Multiple complementary and alternative medicine modalities were suggested to be efficacious in the treatment of COVID-19 such as Thymoquinone. The effects of Thymoquinone have been examined and multiple studies indicate a promising beneficial effect. However, the current body of research is limited in terms of its scope, quality, and quantity. While higher-quality studies are required, physicians do not routinely recommend the use of marketed supplements of natural products, including Thymoquinone for COVID-19. Given the numerous suggested positive effects of Thymoquinone, including anti-inflammatory and antimicrobial properties, additional research is required to confirm or refute these promising benefits. Complementary and alternative medicine is an area that requires additional evidence-based practice and research to confirm effects observed in clinical practice.

17.
Research Journal of Pharmacy and Technology ; 15(1):127-136, 2022.
Article in English | EMBASE | ID: covidwho-1744018

ABSTRACT

The diversity in Jordan’s flora due to its geographical areas make is well noted in the scientific literature. The challenge of disease and death caused by infectious diseases like viruses and bacteria, and as infectious diseases evolve and pathogens develop resistance to existing pharmaceuticals, the search for new novel leads, possibly with different modes of action, against bacterial and viral diseases has intensified in recent years. The intent of this review is to provide prevalent information on the antibacterial and antiviral potential in medicinal plants in Jordan, mode of action, type of viruses and bacteria, and phytochemical contents. It has been demonstrated by several studies presented in this review that medicinal plants in Jordan are rich in phytochemicals and possess antiviral and antibacterial properties.

18.
Polymers (Basel) ; 14(6)2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1732162

ABSTRACT

Thymoquinone (TQ), the main active constituent of Nigella sativa, has demonstrated broad-spectrum antimicrobial, antioxidant, and anti-inflammatory effects, which suggest its potential use in secondary infections caused by COVID-19. However, clinical deployment has been hindered due to its limited aqueous solubility and poor bioavailability. Therefore, a targeted delivery system to the lungs using nanotechnology is needed to overcome limitations encountered with TQ. In this project, a novel TQ-loaded poly(ester amide) based on L-arginine nanoparticles was prepared using the interfacial polycondensation method for a dry powder inhaler targeting delivery of TQ to the lungs. The nanoparticles were characterized by FTIR and NMR to confirm the structure. Transmission electron microscopy and Zetasizer results confirmed the particle diameter of 52 nm. The high-dose formulation showed the entrapment efficiency and loading capacity values of TQ to be 99.77% and 35.56%, respectively. An XRD study proved that TQ did not change its crystallinity, which was further confirmed by the DSC study. Optimized nanoparticles were evaluated for their in vitro aerodynamic performance, which demonstrated an effective delivery of 22.7-23.7% of the nominal dose into the lower parts of the lungs. The high drug-targeting potential and efficiency demonstrates the significant role of the TQ nanoparticles for potential application in COVID-19 and other respiratory conditions.

19.
Bioorg Chem ; 120: 105587, 2022 03.
Article in English | MEDLINE | ID: covidwho-1620506

ABSTRACT

Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella satvia is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoqinone (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinone and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug, The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Nigella sativa , Severe acute respiratory syndrome-related coronavirus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzoquinones/pharmacology , Nigella sativa/chemistry , Plant Extracts/therapeutic use , Thymol/analogs & derivatives
20.
Int J Nanomedicine ; 16: 5117-5131, 2021.
Article in English | MEDLINE | ID: covidwho-1362164

ABSTRACT

As a crucial organ, the lung is exposed to various harmful agents that may induce inflammation and oxidative stress, which may cause chronic or acute lung injury. Nigella sativa, also known as black seed, has been widely used to treat various diseases and is one of the most extensively researched medicinal plants. Thymoquinone (TQ) is the main component of black seed volatile oil and has been proven to have antioxidant, anti-inflammatory, and antineoplastic properties. The potential therapeutic properties of TQ against various pulmonary disorders have been studied in both in vitro and in vivo studies. Furthermore, the application of nanotechnology may increase drug solubility, cellular absorption, drug release (sustained or control), and drug delivery to lung tissue target sites. As a result, fabricating TQ as nanoparticles (NPs) is a potential therapeutic approach against a variety of lung diseases. In this current review, we summarize recent findings on the efficacy of TQ and its nanotypes in lung disorders caused by immunocompromised conditions such as cancer, diabetes, gastric ulcers, and other neurodegenerative diseases. It is concluded that TQ nanoparticles with anti-inflammatory, antioxidant, antiasthma, and antitumor activity may be safely applied to treat lung disorders. However, more research is required before TQ nanoparticles can be used as pharmaceutical preparations in human studies.


Subject(s)
Lung Injury , Nanoparticles , Benzoquinones , Humans , Nigella sativa
SELECTION OF CITATIONS
SEARCH DETAIL